Underpinning Theories

Children's Mathematical Graphics:

  • Cultural-historical theory (e.g. Leont'ev; Van Oers; Vygotsky)

  • Funds of Knowledge/Cultural knowledge (e.g. Moll et al.; Riojas-Cortez; Rogoff)

  • Imagination and symbolic play (e.g. Brooker; Harris; Rogers; Van Oers; Vygotsky)

  • Social semiotic theory (e.g. Cobb, Yackel & Wood; Kress; Vygotsky)

  • Multimodality and graphicacy (e.g. Kress; Jewitt and Kress; Pahl and Rowsell; Lancaster)

  • Post-structuralism (e.g. Foucault, Dahlberg, Moss and Pence; MacNaughton)

  • Language acquisition, grammaticisation and language development (e.g. Langacker, Tomasello, Lancaster.)

  • Abstraction: (e.g. Cassirer, 1977; Tomasello, 2003; van Oers and Poland 2012; Vergnaud 1999)

  • Mathematisation: (e.g. Elbers, 2003; Freudenthal, 1983; Gravemeijer, 2004; Treffers, 1987; van den Heuvel-Panhuizen, 2004; van Reeuwijk, 2001)

  • Bi-numeracy: (e.g. Carruthers and Worthington, 2006)

  • Cumulative cultural evolution / ‘ratchet effect’: (e.g. Tomasello, 1999)

  • Intertextuality (e.g. Kristeva, 1980; Bakhtin, 1981)

Pedagogy - Children's Mathematical Graphics

Open mathematics, open minds

    © Copyright M. Worthington & E. Carruthers 2012

cmn_login.gif (3531 bytes)